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The basic postulates of the extended irreversible thermodynamics are derived 
from the kinetic model for a dilute monoatomic gas. Using the Grad 13-moment 
method to solve the full nonlinear Boltzmann equation for molecules conceived 
as soft spheres we obtain the microscopic expressions for the entropy flux, the 
entropy production, and the generalized Pfaffian for the extended definition of 
entropy as required by such a theory. Some of the physical implications of these 
results are discussed. 
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1. INTRODUCTION 

Linear irreversible thermodynamics is based, among other things, on the 
so-called linear constitutive laws which couple the fluxes in a system with 
the thermodynamic forces. Examples of these equations are Fourier's law 
for heat conduction, Fick's law for diffusion, Ohm's law for the conduction 
of electrical charges, etc. 

The validity of equations of this type was already questioned by 
Maxwell about 116 years ago in his famous paper "On the  Dynamical 
Theory of Gases". (1) There, discussing the concept of viscosity, he pointed 
out that if in a viscous system under a distortion or strain that excites an 
elastic force, say, 5- this latter quantity will not remain constantly propor- 
tional to the rate of distortion but will disappear at a rate which will depend 
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on itself and on the nature of the body. If the rate is proportional to 9- he 
arrives at an equation which for constant strain reads, 

~- = ~/• cons t exp ( -  ~ )  (1) 

where 07 is the viscous relaxation time and 7/the viscosity. Thus if the body 
is left to itself ~" gradually disappears owing to losses in internal stresses, 
and the pressure is finally distributed as in a fluid at rest. Finally, Maxwell 
notices that although for fluids 07 may be vei'y small, of orders of fraction 
of a second in viscous solids it may of the order of days. Later in the paper 
using the kinetic model for a gas composed by soft spheres interacting 
among themselves via a repulsive potential which is proportional to r-5 he 
computes 0, for air at a temperature of 16~ and a pressure of 1 atm, 
finding that 

07 = 1.96 x 10-10 sec 

which is indeed a very small number of the order of magnitude of a mean 
free time. 

These observations of Maxwell were not given their due importance by 
physicists until 1958 when Cattaneo (2) revived the idea that the linear 
equations of irreversible thermodynamics ought to be considered as particu- 
lar cases of relaxation-type equations, so for instance, the traceless stress 
tensor ~" satisfies the differential equation 

d 9" _ 1 [~-+,/(gr~tdu), + . . .  ] (2) 
dt 0 7 

which to first order in the gradient of the macroscopic velocity u leads 
immediately to Eq. (1). These types of equations are now referred to in the 
literature as the Maxwell-Cattaneo equations. Clearly, if 0 7 ~---0 or the 
system is in a stationary state of deformation so that d{r /d t  = 0 

~" = - ~ (gr~td u)' (3) 

which is the ordinary constitutive equation for the momentum flow of 
irreversible thermodynamics. 

The extended irreversible thermodynamics (EIT) is a theory which has 
been developed in the past 15 years with the aim of extending ordinary 
linear irreversible thermodynamics (LIT) to include the class of phenomena 
for which the linear constitutive equations such as Eq. (3) have to be 
substituted by the Maxwell-Cattaneo type of equations. Or to express it 
differently one desires to build up a theory which can explain nonequilib- 
rium states with relaxation times which are no longer negligible with, say, 
the time of duration of a certain measurement. This will be the subject of 
the following section. 
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2. THE EXTENDED IRREVERSIBLE THERMODYNAMICS 

The first attempt to construct this thory is due to Muller, O) who 
proposed to modify the local equilibrium assumption of LIT by introducing 
a dependence of the entropy with additional variables, namely, the heat 
flux q, the traceless part of the stress tensor ~, and its trace 5, which of 
course disappear when the system is in an equilibrium state. This idea has 
been taken by a large number of workers (4's) and given rise to the present 
conception of EIT, whose basic postuiates we shall now discuss. 

The first assumption on which the theory rests is related to the 
variables chosen to describe the state of the system. For a fluid they are the 
usual local variables, the mass density p(r, t), the macroscopic velocity u(r, t) 
and the internal energy density e(r, t), plus a set of nonconserved quantities 
which in the case of the fluid are taken to be the fluxes q, ~, ~ defined 
above. Recall that the total sh'ess tensor ~" is defined as 

~" = pI + ff~ -- pI  + ~" + ~'I (4) 

where p is the local pressure, ~'~ the viscous tensor, ~" its traceless part, and 
~" -- (1/3)tr~ TM, I being the unit tensor. 

This assumption implies that the space of state variables which we 
shall denote by ~, consists of two subsets, one e formed by the usual 
conserved densities and another one ~ formed by the additional noncon- 
served quantities, so that ~ ffi ~ U ~ .  

The second assumption is that the entropy S of the system exists and is 
continuous and differentiable such that its Pfaffian may be written as 

T d S  = de + p d v  + vet I �9 dq + v a o d ~  + v& 2 : d ~  (5) 

where ao, a I and &2 are isotropic tensors of order zero, one, and two, 
respectively, and v = Po 1, Po being the density per unit mass. As it has been 
discussed in many papers in the literature, (5)-(~) 

t e  I ---- a l 0  q "1" all~', q + �9 �9 

&2 = 0~21~"l" a22(qq) s + " ' "  (6) 

a o = a0o~" + a0]~ 2 + a02 q �9 q + � 9  

where the coefficients a~ are functions of e, P0, and the scalar invariants 
of~/. 

Also, in Eq. (5) T and p are defined as partial derivatives of S with 
respect to e and v, respectively keeping all other independent variables 
constant. Thus, they have a strictly formal meaning in ~ but reduce to the 
ordinary equilibrium temperature and pressure in ~. 
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To first order in the nonconserved variables, substitution of (6) in (5) 
leads to the expression 

T O dS = Po dv + de + Vaoo~S d ~ + va l oq" dq + va21 ~ : a ~ (7) 

where T O and P0 are the local equilibrium values of T and p, respectively. 
Hence, the Gibbs equation of LIT is now replaced by the one arising from 
(7) where the time rate of change of the nonconserved quantities remains 
unknown. 

The next assumption of the theory is connected with the structure of 
the entropy balance equation. For an isotropic fluid one assumes that the 
entropy flux Js is the most general isotropic vector in ~ so that 

Js = fl0q + fllq" ~'+ fl2~-q + " ' "  (8) 

where 

/3, =/3/0 +/3i~- + terms with higher-order invariants (9) 

for i = 0, 1,2. The fl~j are now only functions of e and p evaluated at 
equilibrium. Clearly, by comparison with LIT fl~ = T O !, To being the local 
temperature. Thus, to second order in the ~ variables, 

1 
J~ = -~0 q + flot~q + filoq" ~'+ " ' "  (10) 

If we now require that 

as  (11) p ~  + divJ~ = o 

and make use of Eqs. (7), (10), and the conservation equations for p and e 
one arrives at the result that the entropy production is given by 

~00 1 d~-~ o = floldivq - divu + To aoo dt ] 

+ q ' (grad-~o + al~ dq + fl~ + -d[ 2 ill~ 

+ ~ :  [ 1T0 (gr~ + T-oo --~-a2'd~+ 3 fl,0(grh d q),] (12) 

Notice that the property of o according to which in LIT it may be 
written as a sum of the products of forces and fluxes is lost here. Further- 
more, in Eq. (12) there appear the unknown time rates of change of the 
variables. 

The last assumption is to require now that a is the most general scalar 
function in ~. This will allow a way of computing the time evolution 
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equations for the ~ variables. In fact, 

O = X 0 ~  -1- X 1 �9 q + X2 : ~" 

where 

(13) 

Xo =/~00 + #ol ~- +/z02 ~-2 +/~03q " q +/toad': ~- + " " " 

Xl = /~lOq + JUll~-q + ~12q" ~ - +  " ' "  (14) 

X2 = ]s r + ~22 r  ~-+  ~23(q~ s + 1~24 ~-~" + " " "  

and the/z/j are functions of e and p evaluated in equilibrium. If o is to be 
consistent with the corresponding expression in LIT we must dispose of 
these coefficients in (14) (such as /~00) so that in the linear case, o > 0 
implies that 

o =/~,0q 2 +/~01ff 2 + ~21(~': ~ > 0 (15) 

and thus t~lo > 0,/~o] > 0, and/~:l > 0. 
On the other hand the assumption that o > 0 gives no insight whatso- 

ever on the sign of the coefficients in the various terms in (14) if second- 
and higher-order terms in the ~ variables are retained. The implications of 
this assumption has been discussed elsewhere. (8) If we now keep those 
terms in o which are of third order in the R variables and we equate the 
two equivalent forms for o we arrive at the sought expressions for the time 
rate equations of the ~ variables, namely, (6'8) 

d ~ - _  To (/~o1~-+ 1 d ivu- f lo id ivq+/~02~-2+/xo3q 'q+/~04~ ' :~  ") dt %0 

dq-T~176 g r a d T ~ 1 7 6  alo 

+ 3 /31odiv~-+/~11~-q + ~12q. ~- ) (16) 

d~dt �9 OL21 TO [ ~21~''1- ~1 (gradu)S _ 3 fi,o(gradq)s 

+  22dr: o ] -t- /~23(1~q) s + 1s 

Equations (16) are precisely of the type of the Maxwell-Cattaneo 
equations if we neglect all terms which contain gradients of the ~ variables 
and are of order higher than 2 in such variables. For instance, 0 n 
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= a21 / T o/x21, etc. The relaxation times thus depend on the local values of 
the ordinary variables and on the nature of the system through the 
coefficients a/j and/~o" 

It is interesting to point out here that the stationary solutions of Eqs. 
(16) lead to the constitutive equations for q, if, and ~" which give rise to the 
Burnett equations of hydrodynamics. A discussion of this fact and its 
connection with the structure of hydrodynamic equations beyond the 
Navier-Stokes regime has been published elsewhere. (9,1~ 

3. DERIVATION OF EIT FROM KINETIC THEORY 

Just as the results of LIT can be obtained from the Chapman-Enskog 
solution to the Boltzmann equation when one keeps only the first-order 
correction to the single-particle distribution function, (~0 one would like to 
find out if and how the results of EIT summarized in the previous section 
can be derived from kinetic theory. This question has been tackled before 
by several authors (4'12) using the results for the various terms appearing in 
the entropy balance equation (t 1) generated by the second-order correction 
to the distribution function obtained from the Chapman-Enskog scheme. It 
is also pertinent to point out that it is at this order of approximation that 
one obtains the Burnett equations of hydrodynamics referred to above. 
Although one may indeed use the resulting expressions for Js and Os 

obtained in the second-order approximation of the Chapman-Enskog 
theory and cast them in the forms (10) and (7) as required by the EIT, the 
form for o as required by (13) and thus Eq. (11) itself are not satisfied 
simply because the method starts from the assumption that the f(r, v, t) is a 
time-independent functional of the C variables so that the ~ variables 
never appear in the description of the states of the gas. This implies, as may 
be readily verified, that the relaxation equations for the ~ variables are 
completely foreign to the method itself and thus one cannot attempt to 
derive EIT through it. 

The purpose of this section is to show, however, that EIT with the 
Maxwell-Cattaneo equations to first order in the gradients are contained in 
the kinetic description of a dilute gas via the Boltzmann equation when it is 
solved using the 13-moment method introduced by Grad some 30 years 
ago. (13A4) This is not the place to go into the details of the method which is 
lucidly dealt with in Ref. 14, but just to remind the reader that contrary to 
the philosophy of the Chapman-Enskog method, in this case the single- 
particle distribution is expanded in terms of a complete set of functions 
which are taken to be n-dimensional Hermite tensor polynomials. The 
coefficients in this expansion are taken to depend both in space and time 
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and satisfy a set of coupled differential equations which are obtained when 
the exact series for f is substituted in Boltzmann's equation. To uncouple 
the differential equations an arbitrary truncation is introduced, which in 
the very specific case of molecules interacting through a potential which 
goes as r -5 leads to a particularly simple set of closed equations for the 
coefficients left after the truncation. If one truncates the series in the third 
term and keeps only that part of the Hermite polynomial associated with it 
which is related to the heat flux one gets an expression for the single- 
particle distribution function which reads as follows: 

f = f ( o )  1 + 2 ~ C . C ~  2pRT 1 - 5 ~  (17) 

Here c = v - u(r, t) is the thermal velocity, p the local pressure, and R the 
gas constant. The temperature T o is defined as in the Chapman-Enskog 
treatment through f(o) 

(18) 
e = ~ R T  o and p = p R T  o 

It should be emphasized at this point that f depends not only of the C 
variables through f(0) but also on the ~ variables ~" and q. As it is well 
known in the kinetic theory of the ideal gas ff is not present since the bulk 
viscosity is equal to zero. The equations for the @ variables follow from the 
two additional equations that appear corresponding to the two nonvanish- 
ing coefficients and were derived by Grad. The corresponding relaxation 
times are given by 

0" = ( f l p ) - ~ ,  Oq = ( ~  r io)  ~ ( 1 9 )  

for Maxwell molecules only, and fl = (3~r/2)(2/mK)W2A2(5). K is the 
constant in the force law, m the mass of the molecules, and A2(5 ) an 
integral whose numerical value has been obtained in the literature. (11) 

It remains to verify that the method also yields the forms required by 
the EIT so that the entropy balance equation is satisfied. Recalling that the 
Boltzmann equation formally leads to Eq. (11) if (14) 

= - kf f ( l n  f - 1) de ps 

J ,  = - k f cf(ln f - 1) dc (20) 

a = - k f J ( f f ) l n  f d c  
J 
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Then, substitution of Eq. (17) into Eqs. (20) and evaluation of the resulting 
integrals leads to the following results: 

For the entropy per unit mass after differentiation and multiplication 
by To, one gets that 

Tods = Tods(O) + 1 ~ i cl~ + 4 1 �9 dq (21)  
pRT~ 5 (pRr) 2 q 

where ds (~ is the differential of the entropy for the monoatomic ideal gas. 
This is of the form of Eq. (7) in the particular case where the local pressure 
and temperature defined in Eq. (18) retain their meaning in G space. 
Equation (21) is a particular case of the generalized Pfaffian required by 
EIT in ~ space composed of the sum of two Pfaffians, one in ~ space and 
the other one in ~ space. Notice that 

_ 1 4 (22)  
0~10 p2RT ~ ' a lo -  5p(RTo)2 

For the entropy flux Js we get that 

_ q 4 q" gY (23)  
Js To 5 pRT  

which once more is of the form of Eq. (10) with f i l l  = -4 /SpRT .  
Finally, the entropy production o has the following form: 

=/~10q" q +/~20 (r: ~- 

where 

(24) 

_ c 2 l [c,c l )  l ffdcdeB(a)dagc'(snr (25) 
Pqo (pRT)2 

O O 

and a similar expression for #20 in which [e, e] is substituted by [cc, ee] 
O 

and the c term in the integrand is also cc. B(~)da is the differential 
scattering cross section and 

[A, B] = A (e') + A (r - A (e) - A (e,) 

e and e 1 being the velocities before c l, e I after the collision�9 
Thus, the Grad scheme for solving the Boltzmann equation and which 

in essence introduces the ~ variables into the description of the state of the 
gas yields a kinetic explanation for the basic premises of EIT. 

4. C O N C L U D I N G  R E M A R K S  

Although the discussion presented in this paper has the advantage of 
providing some microscopic justification to a theory which has so far not 
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found many successful practical applications (15-17) the whole story is not 
yet complete. In fact, there are still problems in identifying all the terms 
appearing in Eqs. (16) with those appearing in Grad's derivation. Curiously 
enough both sets of equations lead to Burnett equations (8'1~ of hydrody- 
namics so in some way they must be equivalent. 

As one ought to have expected the relaxation times arising from 
Grad's model are also very small for gases in absolute agreement with 
Maxwell's predictions. For instance, in the case of chlorine whose proper- 
ties are reasonably well predicted by the Maxwell soft spheres model, 
taking the experimental value of the viscosity at room temperature which is 
1218 • 10 - 7g / c m-Lsec  -1 to evaluate ( 2 m / K )  1/2 one gets that 0, q and 0 n 
are of the order 10-10 sec. What is then the use of a dilute gas model whose 
microscopic description of a theory, useless for such a system, leads to 
those assumptions? The answer to this question parallels that of the same 
one that could be posed to LIT. In fact the only microscopic model at the 
level of kinetic theory from which one has been able to extract the basic 
assumptions of LIT is the dilute gas and dilute gas mixtures using at most 
slightly modified versions of the Boltzmann equation. But LIT is applicable 
to a much broader class of systems and its validity rests mainly in the 
agreement between theory and experiment. Here we have a similar situa- 
tion. Although we cannot claim on the absolute validity of EIT because it 
may be explained from Boltzmann's equation the result should give us 
some confidence on its postulates. It now remains to look for suitable 
systems in nature whose behavior requires of the introduction of additional 
nonconserved variables and find out if the phenomenological equations 
and their prediction fit within the structure of EIT. Following Maxwell's 
suggestion these systems ought to have state variables with non-negligible 
relaxation times such as viscoelastic solids, rheological fluids, polarizable 
media, etc. But it remains a future task to find out if EIT is a suitable 
structure to predict and describe their behavior. 
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